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Abstract. A benchmark change detection problem is considered which involves the detection of a
change of unknown size at an unknown time. Both unknown quantities are modeled
by stochastic variables, which allows the problem to be formulated within a Bayesian
framework. It turns out that the resulting nonlinear filtering problem is much harder than
the well-known detection problem for known sizes of the change, and in particular that it
can no longer be solved in a recursive manner. An approximating recursive filter is therefore
proposed, which is designed using differential-geometric methods in a suitably chosen space
of unnormalized probability densities. The new nonlinear filter can be interpreted as
an adaptive version of the celebrated Shiryayev–Wonham equation for the detection of
a priori known changes, combined with a modified Kalman filter structure to generate
estimates of the unknown size of the change. This intuitively appealing interpretation of
the nonlinear filter and its excellent performance in simulation studies indicates that it
may be of practical use in realistic change detection problems.
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1. Introduction. Many problems in engineering necessitate the quick and accu-
rate detection of sudden changes in dynamical systems. When one tries to track a
certain object (such as an airplane) on radar, there may be a change of flight path,
and quick detection of such a change is crucial if one wants to filter out noise from the
radar observations. When analyzing seismic data to predict earthquakes or to locate
possible oil wells, it is of obvious importance to detect whether certain changes in the
collected data are significant or not. Complex biomedical signals, such as the EEG,
can be analyzed only by segmentation, which requires change detection procedures
that can be applied automatically to the large quantities of data that are generated
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in the process. And in chemical plants, a safe operation environment can often only
be guaranteed by close monitoring of many signals since immediate action is required
once an undesired change in operation conditions has been detected.

The problem of detecting parameter changes in dynamical systems on the basis
of noisy observations has therefore attracted a lot of attention in the last thirty years,
and the literature dealing with it is extensive. For good surveys of the field and
further references, the reader is referred to the papers by Basseville [2], Iserman [13],
Lai [21], and Willsky [26], and the excellent book by Basseville and Nikiforov [3]. As
is pointed out in [2], the basic method proposed in most of the literature on change
detection consists of two steps. First, the problem is transformed into a standard
problem by generating certain residuals: change indicating signals which are ideally
close to zero when no change occurs. Then, in a separate second step, sophisticated
statistical methods are developed to solve the resulting detection problem in terms
of these residuals. In this paper we will provide a contribution to the second step;
the first step will very much depend on the particular application that one wishes to
consider, and it is therefore not treated here.

The statistical tools used in this second step usually originate in the field of
sequential hypothesis testing, and a wide variety of results concerning their use in
change detection problems is now available [21]. Typically these tests compare a
certain functional of the observations with a threshold, and an alarm is raised as
soon as this threshold is reached. Important examples of such schemes include the
celebrated CUSUM and generalized likelihood ratio (GLR) schemes.

In this paper we want to propose a different approach, in which change detection
is considered to be an on-line estimation problem in which a dynamical system pos-
sesses certain parameters which may exhibit sudden changes that need to be detected
[8]. In our Bayesian formulation of the problem we assume that both the time and the
size of the change are unknown a priori, thus acknowledging the fact that in many
practical situations the behavior of the residual after the change is not completely
known and detection is thus necessarily linked to estimation. In many practical de-
tection problems, one does not only want to know that a change has occurred; one
also wants to obtain on-line estimates of relevant statistics after the change.

We do not consider the problem in which one tries to detect changes off-line, or
where one tries to estimate the time of the change. GLR methods and maximum like-
lihood estimators have been defined for such problems; see, for example, the analysis
in [20]. Results concerning such off-line methods have been derived [6] under the as-
sumption that one does not exactly know the correct model after the change (although
the assumed model should be “close” to the correct model in a predescribed sense).
Those results on the off-line detection problem are in that sense complementary to
the methods we will propose here, but since their goal and assumptions differ from
ours, we redirect the reader to the reference given above for further information.

In a continuous time framework, we can define a basic change detection problem
concerning a simple jump process, which is equal to zero up to a certain random time
τ , then jumps to a random value X, after which it stays constant again. We assume
that such a signal can be observed in white noise, and the purpose is to study the
conditional distribution of the signal given all the observations up to the current time
t and relevant statistics generated by this conditional distribution.

If the value after the change X is known a priori, one can find an explicit stochas-
tic differential equation for the Bayesian a posteriori probability that a change has
occurred—the celebrated Shiryayev–Wonham equation [22, 28]. In fact, this statistic
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can still be calculated recursively if X is known to belong to a finite set of possible
values. The problem can then be solved using the theory of hidden Markov models
[10].

However, if there exists an infinity of possible jump sizes X, then the problem be-
comes much harder, since the detection and estimation problems now become closely
interrelated. The problem of finding on-line estimates for an unknown constant X
which is observed in Gaussian noise can be solved using a Kalman filter, which consists
of a finite number of explicit stochastic differential equations in which the observations
need to be fed to generate the estimates. But this filter will not perform well when
the value of X suddenly changes. The Kalman filter uses the conditional variance of
its estimate in the estimation process, and when X changes, the filter will for a long
time “refuse to believe” that something happened. Where the Shiryayev–Wonham
filter can be used for known values of X to detect the unknown time of the change τ
and the Kalman filter can be used to estimate X for a known value of τ , when both
X and τ are unknown, neither of the schemes will produce good results.

We need to be a bit more specific about what we mean by “good results” when
trying to detect sudden changes. In every change detection problem there is a tradeoff
between detection speed (if a change occurs, how long does it take to notice the
change?) and the probability of false alarm (if no change occurs, how often will the
system still raise an alarm?). When the variance of the noise process goes to zero it
should become easier to detect the jumps, so the detection speed should go to zero. It
turns out that the rate at which this detection speed goes to zero can be characterized
explicitly, and this asymptotic detection delay is therefore an important characteristic
of a change detection scheme. Since we will calculate the conditional probabilities
that a jump has occurred, we can control the probability of false alarm rather easily
by choosing our threshold for the alarm appropriately.

In this paper we will thus formulate and study an approximation to the optimal
filter for processes containing a jump of unknown size and show its excellent per-
formance in terms of this asymptotic detection delay. The conditional estimates we
are interested in can be characterized using the nonlinear filtering theory for discon-
tinuous stochastic processes, and the optimal nonlinear filter for this case has been
derived in [11]. As is often the case in nonlinear filtering problems [7], this filter
does not admit a finite-dimensional recursive implementation, such as the Kalman
filter or Shiryayev–Wonham filter we mentioned earlier. However, since the condi-
tional probability distribution of the process based on the noisy observations can be
derived explicitly, this may be used as a starting point for approximations which are
suboptimal yet can be implemented recursively.

Such approximations can be interpreted as a projection of a trajectory in an un-
countably infinite-dimensional space of probability densities onto a finite-dimensional
manifold in that space. Our approach extends a powerful statistical projection tech-
nique, which was introduced by Brigo, Hanzon, and LeGland in order to filter non-
linear diffusions [4, 5, 12], and which is based on differential-geometric methods in
statistical information theory [1, 17, 18]. We will show that the resulting filter can
be parametrized as a modified Kalman filter which feeds an adaptive version of the
Shiryayev–Wonham filter for known changes that we mentioned earlier. This interpre-
tation may help to explain its excellent performance when compared to other detection
schemes, as will be illustrated in a number of simulation studies.

The structure of this paper is as follows. In the next section we introduce the
stochastic change detection model and derive the nonlinear filter equations for such
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models. In sections 3 and 4 we formulate two recursive filtering algorithms, which
are based on information-theoretic approximations and approximation of conditional
moments, respectively. In section 5 we discuss the relationship between these two
filters. In section 6 we introduce and analyze a three-dimensional nonlinear filter
based on the results derived in earlier sections, and we illustrate the performance of
this filter in some simulation studies in section 7. We finish with conclusions and
suggestions for further research in the last section.

2. TheChangeDetectionModel andOptimal Filter Equations. In this section
we define the optimal filter estimates as generated by the conditional probability
distributions given all the information in the observations up to the current time t.
To define a notion of “available information” we will set up the abstract framework
in terms of σ-algebras generated by observations, since this allows us to characterize
the conditional distributions explicitly in Theorem 2.1. Readers who are not familiar
with this setup may find it helpful to take a look at the derivation for the analogous
discrete time case, which is given directly after the proof of Theorem 2.1.

Let (Ω,F , P ) be the complete canonical probability space for Brownian motion,
i.e., Ω = C([0,∞[), the set of all scalar continuous functions on R+, F the usual σ-
algebra generated by the topology of uniform convergence on compact sets, and P the
Wiener measure on F . Let {Ft, t ≥ 0} be a filtration satisfying the usual conditions,
i.e., an increasing family of σ-algebras which is right-continuous and such that F0
contains all P -null sets. We will use P(A) as a shorter notation for P ({ω ∈ Ω : A(ω)})
in this paper, where A(ω) is a condition on ω, and we will denote the expectation
operator by E, so for a stochastic variable Z we use EZ to denote

∫
Ω Z(ω)dP (ω).

Consider the signal

(2.1) St =
{

0, 0 ≤ t < τ ,
X, t ≥ τ ,

where X ∈ R and τ ∈ R+ are two independent finite random variables on Ω with
distribution functions F , G, respectively. We will assume that X and τ have prob-
ability densities f and g, so P(X ≤ x) = F (x) =

∫ x
−∞ f(u)du for all x ∈ R and

P(τ ≤ r) = G(r) =
∫ r

0 g(u)du for all r ∈ R+. We assume that f and g are both
strictly positive on their domains R and R+ in this paper, unless we explicitly state
otherwise. We will use Et = 1{t≥τ} to denote a unit jump process, so St = XEt for
all t ≥ 0.

We will suppose that the signal St can be observed in additive white noise. We
therefore define a scalar observation process {Y εt , t ≥ 0} by

(2.2) dY εt = St dt+ ε dWt, Y ε0 = 0,

where {(Wt,Ft), t ≥ 0} is a standard Brownian motion process on (Ω,F , P ), which is
independent of both X and τ , and where ε is a real positive parameter representing
the noise intensity.

Let St be a second filtration which is contained in Ft and satisfies the usual
conditions as well, such that both X and 1{t≥τ} are St-measurable for all t ≥ 0, i.e.,
X is S0-measurable and τ is a stopping time with respect to St. The σ-algebra St
then represents the state information up to time t. Likewise, we define Yεt as the
σ-algebra generated by the observation process up to time t:

Yεt
def= σ({Y εs , 0 ≤ s ≤ t}) ⊂ Ft.
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We are interested in the analysis of the conditional laws of the signal St, given the
observations record up to time t. In particular, we would like to estimate the magni-
tude of the jump X at time t and the probability that the jump has already occurred
before time t:

E[X | Yεt ], P(t ≥ τ | Yεt ).

Since such statistics can be calculated from the conditional distribution of St
given the observation record Yεt , we will study this conditional law of the signal on
a fixed finite time interval [0, T ]. Our results concerning the postjump time period
are therefore conditioned on the set {ω ∈ Ω : τ(ω) ≤ T}. We will assume that there
exists a δ > 0 such that

(2.3) E exp [ δX2 ] <∞

throughout the rest of the paper, to make sure that certain conditional expectations
that we wish to calculate do indeed exist.

Theorem 2.1. Under the assumptions mentioned above, the conditional proba-
bility density of the signal St, given the observations {Y εs , 0 ≤ s ≤ t}, is given by

(2.4) (ρεt)
−1 [ (1−G(t)) δ0(x) + qεt (x) ],

where

qεt (x) = f(x)
∫ t

0
g(r) exp

[
x

ε2
(Y εt − Y εr )−

x2

2ε2
(t− r)

]
dr,

ρεt = 1−G(t) +
∫
R

qεt (x) dx.

Proof of Theorem 2.1. We derive an expression for the conditional distribution
of the signal through the Kallianpur–Striebel formula and Girsanov’s theorem. One
may show that the necessary conditions for these methods to be applicable are indeed
satisfied [14] because of (2.3). We then find for the conditional distribution of St given
the observations [14, 27]

P(St ∈ B | Yεt ) = (ρεt)
−1
∫
R

∫ ∞
0

1B(x1{t≥r}) e
Z(x,r,t)
ε2 dG(r)dF (x),(2.5)

where B is a Borel-measurable set, 1B is the indicator function for the set B, ρεt
is a normalization factor equal to the double integral of the right-hand side of this
expression for B = R, and

Z(x, r, t) =
∫ t

0
x1{s≥r} dY εs −

1
2

∫ t

0
(x1{s≥r})2 ds

=
[
x (Y εt − Y εr )−

x2

2
(t− r)

]
1{r≤t}.

After decomposing the inner integral in (2.5) into the intervals [0, t[ and [t,∞[ we find

P(St ∈ B | Yεt ) = (ρεt)
−1
∫
B

∫ t

0
e
Z(x,r,t)
ε2 dG(r)dF (x) + (ρεt)

−1 (1−G(t))
∫
B

δ0(x) dx.

Here and in what follows we will allow the slight abuse of notation which represents the
Dirac measure with its unit mass in the origin as an integral over a Dirac density δ0(x),
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i.e.,
∫
B
δ0(x)dx = 1{0∈B}. For B = R we obtain an expression for the normalization

factor:

ρεt =
∫
R

∫ t

0
e
Z(x,r,t)
ε2 dG(r)dF (x) + (1−G(t)),

and this proves the result.
Using Îto’s differentiation rule, one may easily check that the density qεt (x) satisfies

the following Îto stochastic differential equation:

(2.6) dqεt (x) = f(x)g(t) dt+
x

ε2
qεt (x) dY

ε
t ,

with initial value qε0(x) = 0 for all x ∈ R. This is the Duncan–Mortensen–Zakai
equation of nonlinear filtering for the conditional distribution outside the origin, and
it may be derived directly using the infinitesimal generator of the Markov process
{St, t ≥ 0}.

To get some intuition for this continuous time result, we now briefly look at a
discrete time analogue. Define for n ∈ N

Sn(ω) =
{

0, n < τ̄(ω),
X(ω), n ≥ τ̄(ω),

withX as before, and where the discrete jump time τ̄ : Ω→ N+ is a stochastic variable
on the positive integers with P(τ̄ = k + 1) = gk > 0 for k ∈ N and P(τ̄ = 0) = 0. We
collect discrete observations in the set Yεn = {Y εn , n = 0, 1, . . . , N} according to

Y εn − Y εn−1 = Sn + εWn, Y0 = 0,

where the {Wn, n ≥ 0} are independent and identically distributed Gaussian variables
with mean zero and variance one, which we assume to be independent of both X and
the jump time τ̄ .

We now want to find the conditional distribution of Sn given the observations in
Yεn. It will be convenient to use the stochastic process defined by

Zn = Y εn − Y εn−1 = Sn + εWn, Z0 = 0.

Since the process {Y εk , 0 ≤ k ≤ n} can be reconstructed from {Zk, 0 ≤ k ≤ n} and
vice versa, we have that

pSn|Y ε1 ,Y ε2 ,...,Y εn = pSn|Z1,Z2,...,Zn .

We find

pSn|Yεn = pSn|Z1, Z2,...,Zn(2.7)

=
n∑
k=1

P(τ̄ = k | Z1, . . . , Zn) pSn|Z1,...,Zn, τ̄=k

+ P(τ̄ > n | Z1, . . . , Zn) pSn|Z1,...,Zn, τ̄>n.

We use the notation

φε(x) =
1

ε
√
2π
e−

1
2x

2/ε2
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for the Gaussian density with standard deviation ε. For the first factor we find that

P(τ̄ = k | Z1, . . . , Zn) =
P(Z1, . . . , Zn | τ̄ = k)P(τ̄ = k)

P(Z1, . . . , Zn)
(2.8)

=
P(Z1, . . . , Zn | τ̄ = k)gk−1

P(Z1, . . . , Zn)
.

We now use the fact that conditioned on the event {ω ∈ Ω : τ̄(ω) = k}, the first k
variables {Zi, i = 1, . . . , k − 1} are independent of {Zi, i = k, . . . , n} and N(0, ε2)
distributed:

P(Z1, . . . , Zn | τ̄ = k) =
[
k−1∏
i=1

φε(Zi)

]
· P(Zk, . . . , Zn, | τ̄ = k),

and express the distribution of the later stochastic variables {Zi, i = k, . . . , n} in
terms of the probability density f :

P(Zk, . . . , Zn, | τ̄ = k) =
∫ ∞
−∞

P(Zk, . . . , Zn | τ̄ = k, X = u) f(u) du

=
∫ ∞
−∞

f(u)

[
n∏
i=k

φε(Zi − u)
]
du.

Substituting all this in (2.8) gives the first probability on the right-hand side of (2.7).
For the second probability we find

P(τ̄ > n | Z1, . . . , Zn) =
P(Z1, . . . , Zn | τ̄ > n)P(τ̄ > n)

P(Z1, . . . , Zn)

=
1

P(Z1, . . . , Zn)

[
n∏
i=1

φε(Zi)

] ∞∑
k=n+1

gk−1.

Wemust now determine the distribution functions pSn|Z1,...,Zn, τ̄=k and pSn|Z1,...,Zn, τ̄>n

in (2.7). The last one is trivial since we know that Sn = 0 if τ̄ > n:

pSn|Z1,...,Zn, τ̄>n = δ0(Sn).

To find the first one, we note that

pSk|Z1,...,Zk, τ̄=k =
f(Sk)φε(Zk − Sk)∫∞
−∞ f(u)φε(Zk − u)du

,

while for j ≥ k we have, conditioned on τ̄ = k, that Sj = Sk so

pSn|Z1,...,Zn, τ̄=k =
f(Sn)

∏n
i=k φε(Zi − Sn)∫∞

−∞ f(u)
∏n
i=k φε(Zi − u) du

.
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We have now determined all terms in (2.7) and find

pSn|Z1,...,Zn =
n∑
k=1

gk−1

[
k−1∏
i=1

φε(Zi)

] [
n∏
i=k

φε(Zi − Sn)
]
f(Sn)/c

+
∞∑

k=n+1

gk−1

[
n∏
i=1

φε(Zi)

]
δ0(Sn)/c

=
n−1∑
k=0

gk

(ε
√
2π)n

exp

[
−1
2

k∑
i=1

(
Zi
ε

)2

− 1
2

n∑
i=k+1

(
Zi − Sn
ε

)2
]
f(Sn)/c

+

(
1−

n−1∑
k=0

gk

)
1

(ε
√
2π)n

exp

[
−1
2

n∑
i=1

(
Zi
ε

)2
]
δ0(Sn)/c,

where c is an appropriately chosen normalization constant. Using the fact that∑n
i=k+1 Zi = Y εn − Y εk and noting that the factor exp [−

∑n
i=1

Z2
i

2ε2 ]/c(
√
2πε)n does

not depend on Sn, we rewrite this as follows:

pSn|Yεn(x) = (N ε
n)
−1

[
qεn(x) +

(
1−

n−1∑
k=0

gk

)
δ0(x)

]
,

qεn(x) = f(x)
n−1∑
k=0

gk exp
[
x

ε2
(Y εn − Y εk )−

x2

2ε2
(n− k)

]
,

N ε
n =

∫
R

qεn(x) dx+ 1−
n−1∑
k=0

gk,

where qεn can now be interpreted as the density of S given that a jump has occurred.
But after expressing qεn+1 in terms of qεn, we then find the following analogue of the
Zakai equation for the continuous time nonlinear filtering problem (2.6):

qεn+1(x) = ( f(x) gn + qεn(x) ) exp [ xε2 (Y
ε
n+1 − Y εn)− x2

2ε2 ].(2.9)

We can interpret this equation to update qεn as the result of two separate steps. Be-
tween observations the term f(x)gn is added to qεn(x), and the result is then combined
in a Bayesian way with the new observation, by multiplication with the exponential
term exp [ xε2 (Y

ε
n+1 − Y εn)− x2

2ε2 ].
The Duncan–Mortensen–Zakai equation (2.6) for our original continuous time

problem suggests that to calculate the optimal filter estimates we have to solve a
stochastic partial differential equation on-line. It can indeed be shown that no finite-
dimensional sufficient statistic exists for this problem. Since we need such a finite-
dimensional statistic, which can be updated on-line in a recursive manner for practical
implementation, we will propose and analyze finite-dimensional approximations to the
infinite-dimensional optimal filter objects in the following sections.

3. Differential-Geometric Approximations. The first finite-dimensional approx-
imation that we wish to consider uses projection operators in a space of unnormalized
probability densities to map the infinite-dimensional optimal filtering objects onto
fixed finite-dimensional structures. The appropriate framework for this approxima-
tion method is given by the differential-geometrical theory of statistical information
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and in particular the theory of statistical manifolds. For an excellent introduction
to these relatively new fields, the reader is referred to the book by Amari [1] for
the general theory and to the papers by Kulhavý [17, 18, 19] for its application to
parameter estimation problems. Most important for the approach we wish to take
here is the application of differential-geometric methods to the filtering problem for
nonlinear diffusions [4, 5, 12]. Our analysis forms an extension of the work reported in
these papers, and we have therefore tried to keep our notation consistent with them
whenever possible.

The main idea of our approach will be that we define a finite-dimensional sta-
tistical manifold H1/2 in the infinite-dimensional space of unnormalized probability
densities. A basis will be derived for the tangent space in every point of this manifold,
and we can use these to define a local projection operator which maps the infinitesimal
increments generated by the nonlinear filtering equations onto such tangent spaces.
The resulting stochastic vector field on H1/2 then defines our nonlinear filter.

It may help the reader to compare H1/2 to a curved manifold in finite-dimensional
Euclidean space, where the definition of a manifold in terms of its coordinates and
projection onto tangent planes (such as in Figure 1) are much more intuitive.

In order to use a Hilbert space structure, we will work in the space of square
roots of unnormalized probability densities. Let M be the set of all (not necessarily
normalized) finite nonnegative measures κ on R which are absolutely continuous with
respect to Lebesgue measure and have Radon–Nikodým derivatives p which are strictly
positive Lebesgue almost everywhere. Then we have that the function

√
p : x �→√

p(x) is an element of L2, the Hilbert space of Lebesgue-square integrable functions
from R to R+ \ {0}. Denote the subspace of L2 consisting of such square roots of
strictly positive densities by R. We define on it a metric dR induced by the norm
‖ · ‖L2 , which in turn defines the Hellinger metric dM on the set of measures κ we
started with:

dM(κ1, κ2) = dR(
√
p1,

√
p2) = ‖√p1 −

√
p2‖L2

=

√∫
R

(
√
p1(x)−

√
p2(x) )2 dx.

To find a recursive approximation for the infinite-dimensional optimal filter, we
have to define finite-dimensional structures in the infinite-dimensional space R. We
will therefore consider an (m+ 1)-dimensional manifold N (with m ∈ N), which as a

Fig. 1 Manifold coordinates and tangent space in finite-dimensional space.
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subset of R is imbedded in the larger Hilbert space L2. This means that N is locally
homeomorphic to Rm+1 and is thus described locally by a chart: if

√
p ∈ N , then there

exists an open neighborhood H1/2 of
√
p in N and a homeomorphism ϕ : H1/2 → Θ

onto an open and convex subset Θ of Rm+1. We will assume that there exists in fact
one global and smooth coordinate chart for the entire manifold, so we will consider
manifolds H1/2 defined by

H1/2 = {
√
p(·, θ) : θ = (θ0, θ1, . . . , θm) ∈ Θ} = ϕ−1(Θ),

where {
∂ϕ−1(θ)
∂θ0

,
∂ϕ−1(θ)
∂θ1

, . . . ,
∂ϕ−1(θ)
∂θm

}
is assumed to be a set of linearly independent vectors in L2 for all θ ∈ Θ. To find the
differential-geometric structure of such manifolds H1/2 around a point

√
p ∈ H1/2, we

consider smooth maps α : ]−ν, ν[→ H1/2 (ν > 0) such that α(0) =
√
p. The Fréchet

derivative of α in zero Dα(0), defined by

lim
t→0

‖α(t)− α(0)−Dα(0) · t‖L2

t
= 0,

can be interpreted as a tangent vector to the curve α on the manifold H1/2. We
therefore define the tangent vector space T√pH1/2 in

√
p to H1/2 as the set of all

possible Fréchet derivatives Dα(0) for all such maps α:

T√pH1/2 = {Dα(0) : α smooth map ]− ν, ν[ → H1/2 with α(0) =
√
p }.

This is a linear subspace of L2, which we may calculate more explicitly. Let α =
ϕ−1 ◦ ᾱ, where t→ ᾱ(t) is a smooth map from ]− ν, ν[ to Θ with ᾱ(0) = θ for a fixed
θ ∈ Θ. Then we may apply the chain rule to α : t→

√
p(·, ᾱ(t)) to find

Dα(0) = D
√
p(·, ᾱ(t))

∣∣∣
t=0

=
m∑
k=0

∂
√
p(·, θ)
∂θk

ᾱ′k(0)

=
m∑
k=0

1
2
√
p(·, θ)

∂p(·, θ)
∂θk

ᾱ′k(0),

which shows that

(3.1) T√
p(·,θ)H

1/2 = span
m⋃
k=0

{Bk(·, θ)}, Bk(·, θ) =
1

2
√
p(·, θ)

∂p(·, θ)
∂θk

.

The functions Bk(·, θ) are linearly independent since ϕ was assumed to be a chart,
so they form a basis for the (m+ 1)-dimensional tangent space in the point

√
p(·, θ)

on the manifold. The inner products of the basis elements in L2 generate a matrix
function H(θ):

〈Bi(·, θ) , Bj(·, θ)〉L2 =
∫
R

1
4p(x, θ)

∂p(x, θ)
∂θi

∂p(x, θ)
∂θj

dx
def= 1

4 Hij(θ).

In all points of the manifold
√
p(·, θ) ∈ H1/2 where this matrix is invertible, we

can define an orthogonal projection operator Πθ which maps linear subspaces of L2
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containing the finite-dimensional tangent vector space (3.1) onto this tangent vector
space, using the formula

(3.2) v
Πθ�−→

m∑
i=0

 m∑
j=0

4 [H(θ)]−1
ij 〈v, Bj(·, θ)〉L2

 Bi(·, θ).
In this paper we will use a special class of parametrized families of densities, the

finite-dimensional unnormalized exponential families. An unnormalized exponential
family is given by

(3.3) H1/2 = {
√
p(·, θ), θ ∈ Θ}, p(x, θ) = f(x) exp

[
m∑
k=0

θkck(x)

]
,

where m is a strictly positive integer, {c0, . . . , cm} is a set of linearly independent
scalar functions on R, and f is the probability density of the jump size X, as intro-
duced in the previous section. The parameter vector θ = (θ0, θ1, . . . , θm) is restricted
to lie in the parameter set Θ, which is an open nonempty convex subset of Rm+1

satisfying

Θ ⊆ Θ0
def=

{
θ ∈ Rm+1 :

∫
R

f(x) exp

[
m∑
k=0

θkck(x)

]
dx < ∞

}
.

Throughout this paper we will use the manifold generated by ck(x) = xk for k =
0, 1, . . . ,m, with m an even strictly positive integer, and Θ = {θ ∈ Rm+1, θm < 0}.
On such manifolds, the differential-geometric structure turns out to be a particularly
transparent one. The basis vectors of the tangent space in

√
p(·, θ) are given by

(3.4) Bk(x, θ) =
1

2
√
p(x, θ)

∂p(x, θ)
∂θk

=
1
2
xk
√
p(x, θ)

for k = 0, 1, . . . ,m, and if we define

ηk(θ) def=
∫
R

ck(x)p(x, θ) dx =
∫
R

xkp(x, θ) dx,

we find that the earlier defined inner product matrix H(θ) for the basis elements of
the tangent space in a point

√
p(·, θ) on the manifold is equal to

Hij(θ) = 4 〈Bi(·, θ), Bj(·, θ)〉L2 = ηi+j(θ).(3.5)

The matrix H(θ) will be differentiable with respect to θ for all θ ∈ Θ if all finite order
moments of the jump size X exist, since

(3.6)
∂ηi

∂θj
=
∫
R

xi
∂p(x, θ)
∂θj

dx =
∫
R

xi+j p(x, θ) dx = ηi+j(θ) = Hij(θ).

For θ ∈ Θ the matrix H(θ) will also be invertible, because if H(θ)y = 0 for some
vector y ∈ Rm+1, then

0 =
m∑
i=0

m∑
j=0

yiHij(θ)yj =
m∑
i=0

m∑
j=0

∫
R

yix
i+jyjp(x, θ) dx

=
∫
R

(
m∑
i=0

yi x
i

)2

p(x, θ) dx,
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which implies that y is the zero vector in Rm+1 since p is strictly positive Lebesgue
almost everywhere. We remark that the matrix H(θ) coincides with the Fisher infor-
mation matrix for our class of problems, since we can write it as

Hij(θ) =
∫
R

∂ ln p(x, θ)
∂θi

∂ ln p(x, θ)
∂θj

p(x, θ) dx.

The most important structural property is (3.6). It is exploited repeatedly in
[4, 5], and it will play a central role in our analysis as well. A density from the
exponential family may be characterized in terms of the θ-coordinate system, or the
η-coordinate system, and on Θ the two are related by a diffeomorphism η = η(θ),
which has the Fisher information matrix H as its Jacobian. In terms of Amari [1],
the pair (θ, η) forms a dual coordinate system. However, our particular choice for
this exponential family is not just motivated by this important property but also by
other information-theoretic considerations, since it may be shown that it is in fact the
class of densities which maximize the entropy of a density with respect to Lebesgue
measure once its m+ 1 moments {η0, . . . , ηm} have been specified.

The difference between our problem and the nonlinear filtering problem for dif-
fusions treated in [5] lies mainly in the fact that our state equation does not evolve
smoothly (in fact, not even continuously) and that its evolution depends on two
stochastic variables (the jump size X and the jump time τ). We have seen in the
previous section that the conditional distribution of the signal {St, t ≥ 0} consists
of a Dirac measure in the origin and a smooth density outside the origin, and for
reasons which will become clear later, we do not want to project that part of the
conditional distribution which is represented by the Dirac measure. It will therefore
be more convenient to apply the projection method to the Duncan–Mortensen–Zakai
equation (2.6) for the absolutely continuous part of the density qεt (x) which we defined
in Theorem 2.1:

(3.7) dqt(x) = f(x)g(t) dt+
x

ε2
qt(x) dY εt ,

with initial condition q0(x) = 0 for all x ∈ R. Note that we will suppress the ε-
dependency of this conditional density in our notation from now on.

Our definition of the exponential family also differs from the manifolds used for
diffusion processes in the sense that the densities in our manifold are not normalized.
In fact the differential-geometric structure takes the form of a cone: all scalar multiples
of a certain density on the manifold also lie on the manifold because of the introduction
of the extra parameter θ0. This is important, since the Duncan–Mortensen–Zakai
equation (3.7) provides an unnormalized version of the conditional density outside
the origin, and the normalization constant turns out to have a particular significance
in our case. Indeed,

P(t ≥ τ | Yεt ) = P(St �= 0 | Yεt ) =
∫
R
qt(x) dx∫

R
qt(x) dx+ 1−G(t) ,(3.8)

so the normalization constant is linked to the probability that a jump has occurred,
and estimation of its value using the parameter θ0 will thus be essential.

Note that alternatively we could have directly defined a projection filter with-
out these modifications, when using projections on measures consisting of convex
combinations of the Dirac delta measure and members of the family of exponential
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distributions

p̃(dx, θ) = γ δ0(dx) + (1− γ) f(x)eθ1c1(x)+···+θkck(x)∫
R
f(u)eθ1c1(u)+···+θkck(u)du

dx,

where the parameter γ replaces the old parameter θ0:

γ =
1−G(t)

1−G(t) + eθ0
∫
R
f(u)eθ1c1(u)+···+θkck(u)du

∈ [0, 1].

However, our present formulation involves only measures which are absolutely con-
tinuous with respect to Lebesgue measures, and since this allows us to work directly
with density functions, it is slightly more convenient.

To simplify the calculations on our statistical manifold we will work with the
Stratonovich form of the Duncan–Mortensen–Zakai equation:

dqt(x) =
[
f(x)g(t)− x2

2ε2
qt(x)

]
dt+

x

ε2
qt(x) ◦ dY εt ,

and the differential equation for
√
qt ∈ L2 thus becomes

d
√
qt(x) =

[
f(x)g(t)
2
√
qt(x)

− x2

4ε2
√
qt(x)

]
dt+

x

2ε2
√
qt(x) ◦ dY εt .

To simplify notation we rewrite this as

d
√
qt = P1(

√
qt) dt+ P2(

√
qt) ◦ dY εt ,

with the nonlinear operators Pi (i = 1, 2) on L2 defined in an obvious way. To make
sure that these operators do indeed map back into L2 when we apply them to our
approximate densities p(·, θ), we need the following condition:

For all θ ∈ Θ we have that

(A)
∫
R

x4 p(x, θ) dx < ∞ and
∫
R

f(x)2

p(x, θ)
dx < ∞.

The first part of this condition is rather mild, and the second part will be satisfied
if the tails of the density f vanish rapidly enough. We will see that both parts of
condition (A) are not necessary to formulate our approximate filter, but they are
needed if one wants to interpret the filter as the result of a projection in L2.

The operators Πθ ◦ Pi, with Πθ as defined in (3.2), now generate a stochastic
vector field on the manifold H1/2:

d
√
p(·, θt) =

[
Πθt ◦ P1(

√
p(·, θt))

]
dt+

[
Πθt ◦ P2(

√
p(·, θt))

]
◦ dY εt .(3.9)

Note that we will always use the notation q for the real unnormalized conditional
density outside the origin, and p for its projection.

Our aim is now to describe the evolution of the density in terms of our parameter
vector θt; i.e., we want to find a stochastic differential equation for the result of the
inverse mapping from the trajectory of projected densities on the manifold H1/2 into
our parameter set Θ ⊆ Rm+1. It turns out that we can easily extend the analysis that
was carried out in [4] for diffusion processes.
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Theorem 3.1. Let the conditions of the previous section and condition (A) be
satisfied. Then the parameter vector θt describing the filter (3.9) on the manifold
generated by the exponential family (3.3) with ck(x) = xk satisfies the Stratonovich
stochastic differential equation

(3.10)

dθt = g(t) [H(θt)]−1


1
EX
EX2

...
EXm

 dt− 1
2ε2


0
0
1
...
0

 dt+
1
ε2


0
1
0
...
0

 ◦ dY εt ,

with the matrix function H defined as before by

Hij(θt) =
∫
R

xi+jp(x, θt) dx = θi+j .

This stochastic differential equation has a unique solution up to the (possibly infinite)
almost surely strictly positive exit time inf{t ≥ 0 : θt �∈ Θ}.

Proof of Theorem 3.1. We deal with the two terms in (3.9) separately. For the
first one we find, using (3.2),

Πθt ◦ P1(
√
p(·, θt))

=
m∑
i=0

m∑
j=0

4 [H(θt) ]−1
ij

[∫
R

P1(
√
p)(x)Bj(x, θt) dx

]
Bi(·, θt)

=
m∑
i=0

m∑
j=0

4 [H(θt)]−1
ij

[∫
R

(
f(x)g(t)
2
√
p(x, θt)

− x2

4ε2
√
p(x, θt)

)
1
2
xj
√
p(x, θt) dx

]
Bi(·, θt)

=
m∑
i=0

m∑
j=0

[H(θt)]−1
ij

[
g(t)EXj − ηj+2

t

2ε2

]
Bi(·, θt).

Analogously, the second vector field can be shown to satisfy

Πθt ◦ P2(
√
p(·, θt)) =

m∑
i=0

m∑
j=0

[H(θt)]−1
ij

[
ηj+1
t

ε2

]
Bi(·, θt).

But since

d
√
p(·, θt) =

m∑
i=0

[
1

2
√
p(·, θ)

∂p(·, θ)
∂θi

∣∣∣∣
θ=θt

◦ d(θt)i

]
=

m∑
i=0

Bi(·, θt) ◦ d(θt)i,

equating the coefficients in front of the basis vectors Bi(·, θt) of the tangent space in√
p(·, θt) then gives that

(dθt)i = g(t)
m∑
j=0

[H(θt)]−1
ij EX

j dt− 1
2ε2

m∑
j=0

[H(θt)]−1
ij η

j+2
t dt

+
1
ε2

m∑
j=0

[H(θt)]−1
ij η

j+1
t ◦ dY εt

= g(t)
m∑
j=0

[H(θt)]−1
ij EX

j dt− 1
2ε2

1{i=2} dt+
1
ε2

1{i=1} ◦ dY εt ,
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because of (3.5). Existence and uniqueness of a solution of this equation up to the
almost surely positive exit time inf{t > 0 : θt �∈ Θ} is guaranteed since we showed
before that [H(θ)]−1 exists for all θ ∈ Θ, and since H(θ) is infinitely many times dif-
ferentiable with respect to θ on this set, its inverse certainly satisfies a local Lipschitz
condition.

Some care must be taken when defining the initial conditions for the stochastic
differential equation for θt. At time t = 0 the density outside the origin is equal to
q0(x) = 0 for all x, which would mean that θ0 = −∞ and that the other values in
the θ-vector can be chosen arbitrarily. We can overcome this problem by looking at
the moments vector η instead of θ. We have remarked before that on the domain Θ
the θ-vectors and η-vectors are related by a diffeomorphism. If we look at a small
time δ > 0, we see from the Duncan–Mortensen–Zakai equation (3.7) that qδ(x)
approximately equals f(x)g(0)δ. By (3.6), we have H(θt) ◦ dθt = dηt, so rewriting
(3.10) in terms of moments gives

dηt = g(t)


1
EX
EX2

...
EXm

 dt− 1
2ε2

[H(θt)]


0
0
1
...
0

 dt+
1
ε2

[H(θt)]


0
1
0
...
0

 ◦ dY εt ,

so the moments ηδ at time δ are approximately equal to g(0)δ times the moments of
X, as the expression for qδ confirms. These moments will then uniquely determine the
value of the parameter vector θδ, which may then be used as the initial condition for
the stochastic differential equation for θt. Note that this is the only place where our
assumption that g(0) be strictly positive is explicitly needed, and if one is prepared
to formulate alternative initial conditions for the approximate filter, this assumption
can be weakened.

Equation (3.10) for the evolution of θt has a remarkably simple structure. In
particular, since it has a constant diffusion coefficient, the Stratonovich and Îto forms
of the stochastic differential equation coincide, and every Euler scheme to find numer-
ical approximations to its solution will coincide with a Milstein scheme, guaranteeing
strong convergence of order 1 [16]. Moreover, it is quite easy to give a clear interpre-
tation of the stochastic differential equation. Since qt approximates the conditional
density of St outside the origin, i.e., the conditional density of X, we can interpret
the stochastic differential equation for θt as the sum of two separate vector fields.
The first one keeps the conditional density of X close to the prior density of X:
since dηt = H(θt) ◦ dθt, the solution of dθt = g(t) [H(θt)]−1 [ 1 EX . . . EXm ]T dt
would simply be G(t) = P(t < τ) times that density on the manifold which has the
same first m moments as X. The second vector field dθt = − 1

2ε2 [0 0 1 . . . 0]T dt +
1
ε2 [0 1 0 . . . 0]T ◦ dY εt describes the evolution of the Kalman filter for a Gaussian
distributed random variable X observed in white noise of intensity ε2. Before the
jump, Y εt = εWt, and the influence of the stochastic increment dY εt will be small,
while after the jump it will become significant due to the nonzero drift in Y εt .

The fact that the diffusion coefficient vector in the stochastic differential equa-
tion for θt is a constant vector is a consequence of our choice of the basis func-
tions {c0(x), . . . , cm(x)} which generate the exponential family. The diffusion coef-
ficient vector will always be constant if the function j in the observation equation
dY εt = j(St) dt + ε dWt (in our case simply j(x) = x) and its square (in our case
j(x)2 = x2) are both in the linear space spanned by the functions {c0(x), . . . , cm(x)}.
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A proof is given in [4] for nonlinear filtering problems where the signal St is a diffusion
instead of a jump process, and this result carries over directly to our case.

4. Statistical Approximations. In the previous section, the conditional proba-
bility distribution of our original signal process {St, t ≥ 0} was approximated by a
member of a finite-dimensional family of distributions. Another possible approxima-
tion to the optimal filter can be found by applying the Kushner–Stratonovich equation
of nonlinear filtering. This equation describes the evolution of conditional statistics
in time by means of a stochastic differential equation driven by the observation pro-
cess {Y εt , t ≥ 0}. We will use it to find such stochastic differential equations for the
evolution of the moments of our conditional density and then use these equations to
define another approximate filter. To do so, we first state the Kushner–Stratonovich
equation (for the special case where the state noise and observation noise are inde-
pendent) and then derive a stochastic differential equation for the process {St, t ≥ 0}
which makes it possible to apply it to our particular filtering problem.

Let {Vt, t ∈ [0, T ]} be a scalar stochastic process such that V0 is S0-measurable,
with E|V0| <∞ and

dVt = Dt dt+ dMt,(4.1)
dY εt = St dt+ ε dWt.(4.2)

We assume the following (see section 2 for the definition of the state filtration St):
• {Mt, t ≥ 0} is a right-continuous square integrable St-martingale with left-
hand limits, which is independent of the Wiener process {Wt, t ≥ 0};

• {Dt, t ≥ 0} is an St-adapted process with E
∫ T

0 D
2
u du <∞; and

• {Vt, t ≥ 0} is such that E
∫ T

0 (SuVu)2 du <∞.
We will use the notation α̂t = E [αt | Yεt ] for the conditional expectation of

stochastic processes {αt, t ≥ 0} with respect to the observations σ-algebra Yεt . The
Kushner–Stratonovich equation then states that for t ∈ [0, T ] we have [14, 27]

d V̂t = D̂t dt+
1
ε2

(
ŜtVt − Ŝt V̂t

)
dνεt ,(4.3)

with initial condition V̂0 = EV0. The process

(4.4) νεt = Y
ε
t −

∫ t

0
Ŝu du

is called the innovation process, and under the conditions stated, it is a Brownian
motion with respect to the observations filtration {Yεt , t ≥ 0}.

In order to be able to apply the Kushner–Stratonovich equation to our problem,
we will now derive a description for the signal {St, t ≥ 0} of the form (4.1). Let
Et = 1{t≥τ} denote, as before, the right-continuous St-measurable process which
jumps from zero to one at time τ . The probability that the jump occurs in the time
interval [t, t + dt] given that it has not occurred before time t equals λ(t)dt + o(dt),
where λ(t) is the hazard rate at time t, defined by

λ(t) =
g(t)

1−G(t) .

Define the process Mt as Et minus the integral of this hazard rate up to time t ∧ τ
(where we introduce the usual notation a ∧ b for the minimum of a and b):

Mt = Et −Kt, Kt =
∫ t∧τ

0
λ(s) ds = − ln(1−G(t ∧ τ)).
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Tedious but straightforward calculations show thatMt is an St-martingale (for details,
see, e.g., [9]). But since

t ∧ τ =
∫ t

0
(1− Eu) du,

we have that

Mt = Et + ln
[
1−G

(∫ t

0
(1− Eu)du

)]
,

and we thus find the following representation for Et:

dEt = λ(t ∧ τ) (1− Et) dt+ dMt

= λ(t) (1− Et) dt+ dMt,(4.5)

where we have used the fact that λ(t ∧ τ)(1 − Et) = λ(t)(1 − Et), since if t ∧ τ = τ ,
then 1 − Et = 0. Our original process may now be represented as St = XEt, so it
satisfies

(4.6) dSt = λ(t) (X − St) dt+X dMt,

and in fact for arbitrary k ∈ N \ {0}

(4.7) d(St)k = λ(t) (Xk − (St)k) dt+Xk dMt.

We can now apply the Kushner–Stratonovich equation to this representation of
our signal process, but we first prove a lemma that will be used to simplify the
equations which it generates.

Lemma 4.1. For all t ∈ [0, T ] and k ∈ N \ {0}, we have that, almost surely,

(4.8) E [Xk − (St)k | Yεt ] = (1− Êt)EXk.

Proof of Lemma 4.1. Let B be any set in Yεt . Then by definition,∫
B

E [Xk − (St)k | Yεt ](ω) dP (ω) =
∫
B

(Xk(ω)− (St)k(ω) ) dP (ω)

=
∫
B

Xk(ω)1{t<τ(ω)} dP (ω)

=
∫
B∩{ω:t<τ(ω)}

Xk(ω) dP (ω).

But we have that the σ-algebra generated by sets of the form B∩{ω : t < τ(ω)} (with
B ∈ Yεt ) is independent of sets in the σ-algebra generated by Xk, since Y εt = εWt on
{ω : t < τ(ω)} and the process {Wt, t ≥ 0} is independent of X, so∫

B∩{ω:t<τ(ω)}
Xk(ω) dP (ω) =

∫
B∩{ω:t<τ(ω)}

EXk dP (ω)

=
(
EXk

) ∫
B

1{t<τ(ω)} dP (ω)

=
(
EXk

) ∫
B

E [1− 1{t≥τ} | Yεt ](ω) dP (ω)

=
(
EXk

) ∫
B

(1− Êt(ω)) dP (ω),
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and we may now conclude that (4.8) holds by the almost sure uniqueness property of
conditional expectations.

Theorem 4.2. Let the random variables X and τ and the stochastic processes
{St, t ≥ 0} and {Y εt , t ≥ 0} be defined as in section 2, and let X and τ satisfy all
conditions mentioned in that section. Then the optimal filter estimate Ŝt = E [St | Yεt ]
and higher order moments for t ∈ [0, T ] are generated by the following Îto stochastic
differential equations (k ∈ N \ {0}):

dÊt = λ(t)(1− Êt) dt+
1
ε2
Ŝt(1− Êt) dνεt ,(4.9)

dE [(St)k | Yεt ] = λ(t)EXk(1− Êt) dt(4.10)

+
1
ε2

(
E [(St)k+1 | Yεt ]− Ŝt E [(St)k | Yεt ]

)
dνεt ,

with initial conditions Ê0 = E [(St)k | Yεt ]t=0 = 0 for all k ∈ N \ {0}, and where the
innovation process {νεt , t ∈ [0, T ]} is defined by (4.4).

Proof of Theorem 4.2. The conditions for application of the Kushner–Stratonovich
equation are obviously satisfied for the process Et since

E

∫ T

0
[λ(u)(1− Eu)]2du ≤

∫ T

0
λ(u)2du <∞

(note that λ(t) is finite for all t ≥ 0 and continuous since we assumed that g(t) is
continuous and G(t) < 1 for all t ≥ 0) and E

∫ T
0 |EuSu|du < T · E|X| < ∞. Here

and in the rest of the proof we use the fact that all finite order moments of X exist
because of condition (2.3), which implies that E|X|k <∞ for all k ≥ 0.

Since {Wt, t ≥ 0} was assumed to be independent of X and τ , it is independent
of {Mt, t ≥ 0}. The Kushner–Stratonovich equation applied to (4.5) thus results in

dÊt = λ(t)(1− Êt) dt+
1
ε2
( ŜtEt − ŜtÊt ) dνεt

= λ(t)(1− Êt) dt+
1
ε2
Ŝt(1− Êt) dνεt ,(4.11)

where we have used the fact that StEt = St. The initial condition is Ê0 = E(E0) = 0.
To find the conditional moments E [(St)k | Yεt ] for k ∈ N \ {0}, we use (4.7). Since X
is St-measurable and independent of τ , and E|X|2k <∞, the process {XkMt, t ≥ 0}
is again a square integrable St-martingale which is independent of {Wt, t ≥ 0}. The
two other conditions for the Kushner–Stratonovich formula are satisfied as well, since

E

∫ T

0
(Xk − (Su)k)2λ(u)2du ≤ E|X|2k

∫ T

0
λ(u)2du <∞,

E

∫ T

0
|(Su)kSu|du ≤ T · E|X|k+1 <∞.

We therefore have that for k ∈ N \ {0}

dE [(St)k | Yεt ] = λ(t)E [Xk − (St)k | Yεt ] dt(4.12)

+
1
ε2

(
E [(St)k+1 | Yεt ]− Ŝt E [(St)k | Yεt ]

)
dνεt ,

with initial condition E [(St)k | Yεt ]t=0 = E[(St)k]t=0 = 0.
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Using the result of Lemma 4.1, we see that (4.12) can be simplified to

dE [(St)k | Yεt ] = λ(t)EXk(1− Êt) dt(4.13)

+
1
ε2

(
E [(St)k+1 | Yεt ]− Ŝt E [(St)k | Yεt ]

)
dνεt .

This proves Theorem 4.2.
Note that E [(St)k | Yεt ], the conditional moment of order k, depends on the

conditional moment of order k + 1, E [(St)k+1 | Yεt ], so (4.9)–(4.10) do not form a
closed set of equations. If we want to use these equations to define a finite-dimensional
approximation to the optimal filter, we need to use an appropriate closure formula to
approximate higher order moments in terms of lower order moments. One possible
closure formula, which was proposed in [11], assumes the third order central moment
to be zero at all times, i.e., E [(St − Ŝt)3 | Yεt ] = 0 for all t ∈ [0, T ].

This closing of the infinite set of moment equations that has now been generated,
by expressing higher order moments in terms of lower order moments, means that we
restrict our densities to belong to a specific family of distributions. As was pointed
out earlier in [4], the a priori assumption that the conditional density will belong
to this family at every time instant is often incorrect. But it was shown in the same
paper that a sound mathematical basis can be given for this so-called assumed density
principle in some cases which involve the filtering of nonlinear diffusions, by showing
that the resulting filter is equivalent to a projection in probability density space, like
the one we described in the preceding section. In the next section we will show that
this idea can be applied to our change detection problem as well, and that we can
gain considerable insight into the nature of such problems in doing so.

5. The Assumed Density Principle. To formulate our differential-geometric ap-
proximate filter of section 3 in terms of the conditional moments it generates, we
define, bearing in mind the interpretation of the normalization constant given in
(3.8), the following statistics (where ≈ means approximates):

(5.1)

Ět =

∫
R
p(x, θt)dx∫

R
p(x, θt)dx+ 1−G(t) ≈ P(t ≥ τ | Y

ε
t ),

X̌t =

∫
R
xp(x, θt)dx∫
R
p(x, θt)dx

≈ E[X | Yεt ],

Šnt =

∫
R
xn p(x, θt)dx∫

R
p(x, θt)dx+ 1−G(t) ≈ E[(St)

n | Yεt ],

with n ∈ N, so Š0
t = Et and Š

1
t = Št.

We remark that this implies that Št = X̌tĚt, i.e., that the conditional estimate
of the signal Št naturally splits into two statistics Ět and X̌t, which approximate the
conditional probability of a jump having occurred and the best estimate of the jump
size, respectively. We have shown in (4.8) that the optimal filter estimates satisfy, for
X̂t = E [X | Yεt ] �= 0,

Ŝt = X̂t

(
1− (1− Êt)

EX

X̂t

)
,

so the optimal filter estimates will in general not satisfy the equation Ŝt = X̂tÊt.
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However, this does not imply that the estimate Št which is generated by the
differential-geometric approximation is different from the filter estimate Ŝt generated
by closing the Kushner–Stratonovich equations, as we did in the previous section. We
now show that they are in fact the same if we use (4.9) and (4.10) to calculate the
first m+1 moments and then close the equations in an appropriate way, by choosing
Šm+1
t appropriately.

Theorem 5.1. Let the conditions of Theorem 3.1 be satisfied, and let the process
{θt, t ≥ 0} be defined as in (3.10). Define Ět, Št, and Šnt as in (5.1) for n = 0, . . . ,m+
1. Then Ět = Š0

t , Št = Š
1
t , and Š

n
t (n = 2, . . . ,m) satisfy

dŠnt = λ(t) (1− Ět)EXn dt+
1
ε2

( Šn+1
t − Št Šnt ) ( dY εt − Št dt ),

with initial conditions Šn0 = 0 for all n = 0, . . . ,m.
Proof of Theorem 5.1. To find the stochastic differential equations for the Šnt (n =

0, . . . ,m) we must first find the equations for the approximated conditional moments
ηkt (k = 0, . . . ,m), but this is relatively simple since (3.6) implies that

dηkt = [ ηkt ηk+1
t · · · ηk+m

t ] ◦ dθt,

and the result of Theorem 3.1 then gives

(5.2) dηkt = g(t)EX
k dt− ηk+2

t

2ε2
dt+

ηk+1
t

ε2
◦ dY εt .

Using the Îto form of (5.2),

dηkt = g(t)EX
k dt+

ηk+1
t

ε2
dY εt ,

we find by Îto’s differentiation rule that for all k = 0, . . . ,m,

dŠkt =
dηkt

η0
t + 1−G(t) −

ηkt d(η
0
t + 1−G(t))

(η0
t + 1−G(t))2 − dηkt d(η

0
t + 1−G(t))

(η0
t + 1−G(t))2

+
ηkt d(η

0
t + 1−G(t))d(η0

t + 1−G(t))
(η0
t + 1−G(t))3

=
EXkg(t)dt+ ηk+1

t dY εt /ε
2

η0
t + 1−G(t) − ηkt η

1
t dY

ε
t /ε

2

(η0
t + 1−G(t))2 −

ηk+1
t η1

t dt/ε
2

(η0
t + 1−G(t))2

+
ηkt (η

1
t )

2dt/ε2

(η0
t + 1−G(t))3

=
g(t)

1−G(t)

(
1− η0

t

η0
t + 1−G(t)

)
EXk dt

+
1
ε2

(
ηk+1
t

η0
t + 1−G(t) −

ηkt η
1
t

(η0
t + 1−G(t))2

) (
dY εt −

η1
t

η0
t + 1−G(t) dt

)
= λ(t)(1− Ět)EXk dt+

1
ε2

( Šk+1
t − Št Škt ) ( dY εt − Št dt ),

which proves the theorem.
These equations are precisely the same as the ones we derived for the filter of

the previous section, (4.9) and (4.10), if we replace E [Skt | Yεt ] by Škt . It thus follows
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that if we close these equations by choosing Šm+1
t appropriately, then the two filters

generate the same estimates almost surely. However, some care must be taken in
finding the appropriate closure formula. For example, in the Gaussian case (m = 2),
we must not choose the third central moment to be equal to zero, as we proposed at
the end of section 4. Since p(x, θt)/

∫
R
p(x, θt)dx is assumed to be Gaussian, and since

a Gaussian variable A satisfies EA3 = [EA] · [3EA2 − 2(EA)2], we have

(5.3)
η3
t

η0
t

=
η1
t

η0
t

(
3
η2
t

η0
t

− 2
(
η1
t

η0
t

)2
)

⇒ Š3
t

Ět
=
Št

Ět

(
3
Š2
t

Ět
− 2
(
Št

Ět

)2)
.

Only when this more complicated closure formula for E [(St)3 | Yεt ] in terms of the
lower order moments E [(St)2 | Yεt ], E [St | Yεt ], and E [Et | Yεt ] is used will the
estimates generated by the Kushner–Stratonovich equation be the same, almost surely,
as those generated by our differential-geometric approximation.

6. A Three-Dimensional Filter. Although the filter derived in section 3 using
differential-geometric methods is thus equivalent to the filter derived in section 4
when the correct closure formula is used, there are certain advantages of the first
parametrization. We already mentioned the fact that better schemes can be used to
calculate numerical approximations of (3.10). Another advantage is the much more
intuitive structure of the filter. If we define the a priori moments of the jump size X
as Pn = E(X − EX)n and the approximate filter estimates

P̌nt =

∫
R
(x− X̌t)np(x, θt)dx∫

R
p(x, θt)dx

≈ E[(X − E [X | Yεt ])n | Yεt ],

then one may show by a tedious but straightforward exercise in Stratonovich calculus
[23] that for n = 2, . . . ,m,

dĚt = λ(t)(1− Ět) dt+ Ět(1− Ět)
X̌t
ε2

( dY εt − Št dt ),(6.1)

dX̌t = λ(t)
1− Ět
Ět

(EX − X̌t) dt+
P̌ 2
t

ε2
( dY εt − X̌t dt ),(6.2)

dP̌nt = λ(t)
1− Ět
Ět

[
Pn − P̌nt + n(Pn−1 − P̌n−1

t ) (EX − X̌t)

+
n−2∑
k=0


n
k


P k(EX − X̌t)n−k

]
dt

− n P̌ 2
t

ε2
[
P̌nt − 1

2 (n− 1) P̌ 2
t P̌

n−2
t

]
dt

+
1
ε2

[ P̌n+1
t − nP̌ 2

t P̌
n−1
t ] (dY εt − X̌t dt).

These stochastic differential equations can be interpreted as the sum of vector fields
which drive the conditional density to the a priori density of X (and these dominate
before the jump when Ět will be close to zero), vector fields which resemble those of
the Kalman filter for a constant signal (which dominate after the jump when Ět will
be close to one), and some extra terms which make sure we do not leave the manifold
that we project upon.
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Note that the terms involving the innovation process in the equations for P̂nt (n =
2, . . . ,m) will all be zero if and only if the central moments satisfy the equation
P̂n+1
t = nP̂ 2

t P̂
n−1
t for n = 0, . . . ,m. Since we have that P̂ 0

t = 1 and P̂ 1
t = 0 for all

t ≥ 0, this will be the case if for all n ∈ N,

P̂ 2n
t = (P̂ 2

t )
n · 2−n (2n)!

n!
, P̂ 2n+1

t = 0;

i.e., the first m + 1 central moments should be the same as those of a Gaussian
distribution. This suggests that the equations will become even simpler if both X
and our manifold are Gaussian, which is exactly the exponential family we get if
we take m = 2 and the parameter set Θ = {(θ0, θ1, θ2) : θ2 < 0}. In the rest of this
section we will analyze the detection and estimation scheme when such a manifold of
unnormalized Gaussian densities is used.

If we substitute the relation Št = X̌tĚt into the stochastic differential equation for
Ět given by (6.1), we see the close connection with the Shiryayev–Wonham detector
for known jump sizes. As we remarked in section 2, if we assume that the jump size
X is known a priori, say, X = a, then the conditional probability that the jump has
occurred, πt = P(t ≥ τ | Yεt ), is finite-dimensionally computable. In fact, it follows
from the Shiryayev–Wonham equation [22, 28] that

(6.3) dπt = λ(t)(1− πt) dt+ πt(1− πt)
a

ε2
(dY εt − aπt dt), π0 = 0.

Our estimate of the probability that a jump has occurred satisfies a modified version
of this Shiryayev–Wonham equation, where a known jump size X = a in the equation
is replaced by a time-varying estimated jump size X̌t. For m = 2 our differential-
geometric approximation thus becomes a mixture of modified Kalman filter equations
and this adaptive Shiryayev–Wonham equation:

Št = Ět X̌t,

dĚt = λ(t)(1− Ět) dt+ Ět(1− Ět)
X̌t
ε2

( dY εt − X̌tĚt dt ),

dX̌t = λ(t)
1− Ět
Ět

(EX − X̌t) dt+
P̌ 2
t

ε2
( dY εt − X̌t dt ),

dP̌ 2
t = λ(t)

1− Ět
Ět

[(EX − X̌t)2 +Var X − P̌ 2
t ] dt− (P̌ 2

t )
2

ε2
dt,

with Ě0 = 0, P̌ 2
0 = Var X, and X̌0 = EX.

In Figure 2, a block diagram of the filter is given that highlights the decomposition
of the problem in a detection and an estimation part, which communicate through
the jump size estimate X̌t and the conditional probability ratio (1 − Ět)/Ět. We
remark that the original optimal detection and estimation problem as we formulated
it cannot be solved recursively because we want to perform detection and estimation
simultaneously. If the estimation problem was trivial (i.e., if we knew the jump size
X immediately after the jump), the detection problem could be solved recursively,
since we could then use a Shiryayev–Wonham filter tuned at a = X. If the detection
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Fig. 2 Structure of the three-dimensional approximating filter.

problem was trivial (i.e., we knew immediately after time τ that a jump had occurred),
then the estimation problem could be solved recursively, since we could simply start
a Kalman filter at time τ .

In our combined problem, however, we must make sure that the Kalman filter
does not start filtering too early, since it would then filter the zero signal for some time
while its conditional variance P̌ 2

t would decrease, making its reaction too slow when
the jump does indeed occur. The likelihood ratio term in the equation for P̌ 2

t , which
pulls the conditional variance P̌ 2

t back to the variance of X as long as Ět is small,
prevents this from happening. After the jump has occurred, a good estimate of X
should quickly become available, and the stochastic differential equation for Ět will
then resemble the Shiryayev–Wonham equation. We therefore expect the estimate
for the conditional probability that a change has occurred to converge to one quite
quickly after that. We will see in the simulation studies of the next section that this
will indeed be the case.

7. Simulation Results. In this section we will investigate the performance of the
approximating filters that we defined in previous sections, by means of simulation
studies. To do so, we first have to establish that there exists a finite, nonexploding
solution to our filter equations which is unique up to equivalence and almost surely
continuous. Such a proof can indeed be given using the theory of stochastic Lyapunov
functions, but we will omit it here and refer the interested reader to the original paper,
where a full proof is given.

In the simulation studies performed here we compare the optimal filter and our
approximations. We can find the optimal filter estimates by solving the Duncan–
Mortensen–Zakai equation (2.6), but this requires a lot of computational time. To
do this, we used a grid which divided the interval [−3.0, 3.0] for possible values of
X in 1500 equidistant points. In Figure 3 we plot an example of the evolution of
the conditional density over time, and also of the conditional mean, which represents
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Fig. 3 Conditional density and optimal estimate.

the optimal estimate of the signal S at the time. The delta measure in zero (which
represents most of the probability mass before the jump takes place) has been omitted
from the plot. We can clearly see the detection delay in this figure and the long tails
in the distribution before the jump has happened.

Alternatively, we can use our simple three-dimensional filter to get approxima-
tions for these optimal filter estimates on-line. In the figures in this section we show
estimates for both the value of the signal, E[St | Yεt ], and for the conditional proba-
bility that a jump has occurred, P(t ≥ τ | Yεt ). The top graphs refer to the optimal
estimates, and the bottom graphs to our approximations in all cases.

Experiment 1. For the first simulation study we took τ to be an exponentially
distributed stochastic variable with mean 15.0, and the jump size X to be normally
distributed with zero mean and unit variance. We let the actual jump take place at
τ = 2.0, and the jump size was taken to be X = 0.5 exactly. The noise parameter ε
was taken as 0.10. All filters estimates were calculated on a time interval t ∈ [0.0, 4.0],
using an Euler scheme with step size 4.0 · 10−5.

We first simulated the differential-geometric approximation as formulated in the
previous section; i.e., we took the dimension of the filter m + 1 = 3, which means
we project upon a manifold of Gaussian densities. In Figures 4 and 5 the results
are shown for two different implementations of our filter. In Figure 4 the filter was
implemented by (3.10), the stochastic differential equation for the parameter vector
θt, while in Figure 5 the direct equations for the moments which we derived in the
previous section were used. There are some small differences between the two, which
should be attributed to inaccuracies in the calculation of [H(θt)]−1 in (3.10) and in
the numerical method we use. However, in both cases the filter estimates show excel-
lent behavior both before and after the change point. Both implementations slightly
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(a) Estimate of E [St | Yεt ] (b) Estimate of P(t ≥ τ | Yεt )

Fig. 4 Comparison between optimal and approximate filter, using (3.10).

(a) Estimate of E [St | Yεt ] (b) Estimate of P(t ≥ τ | Yεt )

Fig. 5 Comparison between optimal and approximate filter, using moments.

overestimate the conditional probability of a jump having occurred, but only after
the jump. Around t = 2.6 the approximate and the exact conditional signal estimates
are already indistinguishable. More importantly, the small delay in detection of the
optimal filter (seen to be approximately 0.10 here) is the same for the approximate
filter. For an extensive analysis of such detection delays in the optimal filter and its
suboptimal approximations, the reader is referred to [11] and [23].

For comparison, Figure 6 shows a simulation of the same model setup for the
approximating filter which we derived in section 4, where conditional moments are
generated by using the Kushner–Stratonovich equation and the assumption that the
third order central conditional moment is equal to zero. We showed in (5.3) that this
filter, which was proposed in [11], is not equivalent to our filter, and its behavior is
seen to be a lot worse. Although it will estimate both the signal and the conditional
probability correctly in the long run, its behavior before the change is totally unac-
ceptable. Indeed, the conditional probability is negative most of the time, and the
estimates of the signal before the change are not close to the true value zero at all.
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(a) Estimate of E [St | Yεt ]. (b) Estimate of P(t ≥ τ | Yεt ).

Fig. 6 Comparison between optimal filter and filter of section 4.

 

 

(a) Estimate of E [St | Yεt ]

 

 

(b) Estimate of P(t ≥ τ | Yεt )

Fig. 7 Comparison between optimal and approximate filter.

Experiment 2. To show that the excellent results for our differential-geometric
approximation are not just a consequence of X being Gaussian, we performed a sec-
ond simulation in which X was taken to be uniformly distributed on [0, 2]. The jump
time was given the same distribution as in the first set of experiments, and the actual
jump time was again taken to be τ = 2.0. The jump size was taken equal to X = 1.0,
and ε = 0.10.

Figure 7 shows the estimates generated by our approximate filter, implemented by
(3.10). The detection delay of 0.10 is almost exactly the same as for the optimal filter,
and good filter estimates are produced almost directly after that. Apparently the
algorithm works quite well for a jump size X with a uniform distribution, even though
this distribution cannot be approximated very well on the exponential manifold that
we project upon. In practice this is not important, since after the jump the behavior
in the center of the state space can be shown to be asymptotically Gaussian in a large
deviations sense. We again refer to [11] and [23] where an exact statement of this
result is given, which helps to explain the good performance of our filter.
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8. Conclusions. In this paper, we have argued that nonlinear filtering theory can
be used to characterize and approximate relevant conditional statistics in those change
detection problems where the size of the change is not known a priori. We have shown
that a simple three-dimensional nonlinear filter can be defined which may be shown
to have a global and unique solution under mild conditions and which performs well
in simulation studies. Apart from an interpretation in terms of information geometry
and in terms of an assumed density principle, we may view the equations for this filter
as an adaptive version of the Shiryayev–Wonham equation, fed by estimates from a
modified Kalman filter.

Some interesting problems are still open at the moment. These include, for ex-
ample, the design of adaptive change detectors for discrete time problems, the design
of detectors for more complicated signal changes such as the changing slope process
[25]

Rt =
{

0, 0 ≤ t < τ ,
X(t− τ), t ≥ τ ,

and the derivation of further theoretical properties of the filters that we defined in
this paper.
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